Chiral Total Synthesis of Indole Alkaloids of the Aspidosperma and Hunteria Types

Manabu Node, Hideko Nagasawa, and Kaoru Fuji*
Institute for Chemical Research, Kyoto University, Uji, Kyoto 611, Japan

Received June 9, 1989

Abstract

Expeditious enantioselective syntheses of (+)-quebrachamine (6), (-)-aspidospermidine (7), (+)-demethoxyaspidospermine (8), and (-)-eburnamonine (9) were accomplished starting from (S)-lactone 1 . The syntheses also complete formal, total syntheses of 12 other indole alkaloids of the Aspidosperma and Hunteria types. The key step in the synthesis of (+)-quebrachamine (6) was the Pictet-Spengler condensation of chiral C_{9} unit 10 , derived from 1, with tryptamine. Another C_{9} unit (15) was also prepared from 1 and utilized for the syntheses of three other alkaloids, 7, 8, and 9 .

Indole alkaloids play a central role in the biologically active alkaloids. A plethora of papers on the synthesis of Aspidosperma and Hunteria alkaloids reflect the continuing interests in these alkaloids. ${ }^{1}$ The indole-2,3-quinodimethane strategy reported by Magnus et al. ${ }^{2}$ is among the most elegant one from the chemical point of view. The Pictet-Spengler or the Bischler-Napieralsky condensation of tryptamine with the C_{9} or C_{10} unit is one of the best methods of choice for the synthesis of these types of indole alkaloids because of the general applicability. However, this approach has seldom been applied for the synthesis of optically active alkaloids due to the lack of an efficient method for the synthesis of the chiral C_{9} or C_{10} unit. We have developed a one-pot chiral synthesis of α, α-disubstituted δ-lactone 1 with a high enantiomeric excess (ee) in excellent yield through an addition-elimination process. ${ }^{3}$ The lactone 1 has a C_{9} unit in which each carbon is optimally arranged for the synthesis of the target alkaloids and possesses a different functional group feasible for the necessary transformations. Here, we report the full account ${ }^{4}$ of efficient chiral synthesis of three Aspidosperma alkaloids, (+)-quebrachamine (6), ${ }^{5}(-)$-aspidospermidine (7), ${ }^{6,7}$ and (+)-demethoxyaspidospermine (8), ${ }^{7,8}$ and a
(1) (a) Aspidosperma alkaloids: Cordell, G. A. In The Alkaloids; Manske, R. H. F., Rodrigo, R. G. A., Ed.; Academic Press: New York, 1979; Vol. XVII, p 199. (b) Hunteria alkaloids: Döpke, W. In The Alkaloid; Manske, R. H. F., Rodrigo, R. G. A., Ed.; Academic Press: New York, 1981; Vol. XX, p 297. Atta-ur-Rahman, Sultana, M. Heterocycles 1984, 22, 841.
(2) (a) Magnus, P.; Gallagher, T.; Brown, P.; Pappalardo, P. Acc. Chem. Res. 1984, 17, 35 . (b) Magnus, P.; Pappalardo, P.; Southwell, I. Tetrahedron 1986, 42, 3215. (c) Magnus, P.; Pappalardo, P. J. Am. Chem. Soc. 1986, 108, 212. (d) Cardwell, K.; Hewitt, B.; Ladlow, M.; Magnus, P. J. Am. Chem. Soc. 1988, 110, 2242 and references cited therein.
(3) Fuji, K.; Node, M.; Nagasawa, H.; Naniwa, Y.; Terada, S. J. Am. Chem. Soc. 1986, 108, 3855.
(4) A part of this work has been published in a preliminary form: Node, M.; Nagasawa, H.; Fuji, K. J. Am. Chem. Soc. 1987, 109, 7901.
(5) For the racemate, see: (a) Stork, G.; Dolfini, J. E. J. Am. Chem. Soc. 1963, 85, 2872. (b) Kuehne, M. E.; Bayha, C. Tetrahedron Lett. 1966, 1311. (c) Kutney, J. P.; Abdurahman, N.; Le Quesne, P.; Piers, E.; Vlattas, I. J. Am. Chem. Soc. 1966, 88, 3656. Kutney, J. P.; Abdurahman, N.; Gletsos, C.; Le Quesne, P.; Piers, E.; Vlattas, I. Ibid. 1970, 92, 1727. (d) Ziegler, F. E.; Kloek, J. A.; Zoretic, P. A. Ibid. 1969, 91, 2342. (e) Takano, S.; Hatakeyama, S.; Ogasawara, K. Ibid. 1976, 98, 3022. (f) Takano, S.; Hirama, M.; Araki, T.; Ogasawara, K. Ibid. 1976, 98, 7084. (g) Takano, S.; Hatakeyama, S.; Ogasawara, K. Ibid. 1979, 101, 6414. (h) Giri, V. S.; Ali, E.; Pakrashi, S. C J. Heterocycl. Chem. 1980, 17, 1133. (i) Takano, S.; Murakata, C.; Ogasawara, K. Heterocycles 1981, 16, 247. (j) Wenkert, E.; Halls, T. D. J.; Kwart, L. D.; Magnusson, G.; Showalter, H. D. H. Tetrahedron 1981, 37, 4017. (k) Ban, Y.; Yoshida, K.; Goto, J.; Oishi, T. J. Am. Chem. Soc. 1981, 103, 6990. Ban, Y.; Yoshida, K. Goto, J.; Oishi, T.; Takeda, E. Tetrahedron 1983, 39, 3657. (1) Mandel, S. B.; Giri, V. S.; Sabeena, M. S.; Pakrashi, S. C. J. Org. Chem. 1988, 53, 4236. For the optically active form, see: (m) Takano, S.; Chiba, K.; Yonaga, M.; Ogasawara, K. J. Chem. Soc., Chem. Commun. 1980,616. (n) Takano, S.; Yonaga, M.; Ogasawara, K. Ibid. 1981, 1153. (o) Asaoka, M.; Takei, H. Heterocycles 1989, 29, 243.

Hunteria alkaloid, (-)-eburnamonine (9), ${ }^{9}$ starting from $(S)-(-)-1$. These alkaloids contain a C_{9} unit as a monoterpene part.

Scheme I shows our synthetic plan based on the Pic-tet-Spengler condensation. All four target alkaloids have a common structural feature involving a quaternary carbon bearing an ethyl group, $\mathrm{C}_{1}, \mathrm{C}_{2}$, and C_{3} units. In the Pic-tet-Spengler approach, the aldehyde 2 is required for the construction of the key intermediate 4 in the synthesis of $(+)$-quebrachamine (6). While the key intermediate 5 for the syntheses of $(-)$-aspidospermidine (7) and (- -)-eburnamonine (9) can be prepared from another aldehyde, 3 , in which, except for the ethyl group, each carbon unit on the chiral quaternary center has a different oxidation stage from 2.

[^0]

Scheme II ${ }^{\text {a }}$

(a) $\mathrm{TiCl}_{3} / \mathrm{MeOH} / \mathrm{pH} 5$; (b) tryptamine/ AcOH ; (c) LiAlH_{4}; (d) $\mathrm{MsCl} / \mathrm{Et}_{3} \mathrm{~N}$; (e) $\mathrm{Na} /$ liquid NH_{3}

Chiral Synthesis of (+)-Quebrachamine (1). For preparation of aldehyde 2 or its equivalent, the necessary transformation is to convert the α, β-unsaturated nitro group into the $-\mathrm{CH}_{2} \mathrm{CHO}$ moiety. The McMurry modification ${ }^{10}$ of the Nef reaction gave the best results. Thus, treatment of 1 of 85% ee with TiCl_{3} in aqueous methanol at pH 5 provided the methyl acetal 10 , which is a chemical equivalent of the desired aldehyde 2 (Scheme II). It is worthy of note that the one-step conversion of an α, β unsaturated nitro compound into an aldehyde has not been reported although a similar transformation giving a ketone is found in the literature. ${ }^{10}$ The acetal 10 was characterized as acetate 11. For the preparative purpose, crude acetal 10 was immediately subjected to the Pictet-Spengler condensation with tryptamine in acetic acid to yield 4 as an approximately $1: 1$ epimeric mixture at $\mathrm{C}-3$ in 84% overall yield from 1. Reduction of 4 with LiAlH_{4} in tetrahydrofuran (THF) afforded $12 \mathbf{a}^{5 \mathrm{~m}}$ and $12 \mathbf{b}^{5 \mathrm{n}}$ in 33% and 50% yield, respectively. A crude mixture of 12 a and $\mathbf{1 2 b}$ was used for the synthesis of (+)-quebrachamine (6), since the chiral center at $\mathrm{C}-3$ was destroyed at the later stage. According to Kutney's procedure, ${ }^{5 \mathrm{c}}$ mesylation of a mixture of 12 a and 12 b gave 13 , which was directly reduced with $\mathrm{Na}-\mathrm{EtOH}$ in liquid ammonia to furnish crude (+)-quebrachamine (6). A single recrystallization from MeOH yielded optically pure (+)-quebrachamine in 53% overall yield from the lactam 4.

Synthesis of (-)-Eburnamonine (9). The reductive denitration of 1 in dimethoxyethane (DME) afforded the

Scheme III ${ }^{a}$

${ }^{a}$ (a) $\mathrm{TiCl}_{3} / \mathrm{DME} / \mathrm{pH} 5$; (b) NaBH_{4}; (c) $\mathrm{HCl} / \mathrm{MeOH} /$ reflux; (d) Jones reagent (e) DIBAH; (f) $p-\mathrm{TsOH} / \mathrm{MeOH}$; (g) tryptamine/ AcOH ; (h) $\mathrm{NaOH} / \mathrm{MeOH}$; (i) $\mathrm{CrO}_{3} /$ pyridine; (j) LiAlH_{4}; (k) Hg $\left(\mathrm{OAc}_{2} ;\right.$ (l) $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2} / \mathrm{PCC}$.
hemiacetal 14. Reduction of 14 with NaBH_{4}, followed by refluxing in methanolic HCl , gave the γ-lactone alcohol 15 in 75% overall yield from 1 (Scheme III). No isomeric δ-lactone alcohol 21 was formed under these conditions. Transformation of 15 to the acetal 16, which is an equivalent to the desired non-tryptamine unit 3 , was carried out in 75% yield through three steps involving Jones oxidation, reduction with diisobutylaluminum hydride (DIBAH), and acid treatment in methanol. A 6% yield of the lactone ester 17 was obtained along with 16 . The condensation of 16 with tryptamine in acetic acid proceeded smoothly to afford an approximately 1:1 mixture of 5 a and 5 b in 84% yield after basic hydrolysis. Enantiomeric enrichment of $5 a$ and $5 b$ by recrystallization was performed at this stage. The α-configuration of $\mathrm{H}-3$ in $\mathbf{5}$ b was confirmed by the conversion to the known dilactam ${ }^{99} 18$ on the Sarett oxidation. (-)-Eburnamonine (9) was obtained from 18 in 74% yield on reduction with LiAlH_{4} followed by Sarett oxidation. ${ }^{11}$ Another isomer 5 a formed from the PictetSpengler condensation could serve as an intermediate for the synthesis of (-)-eburnamonine ($\mathbf{9}$) because $\mathbf{5 a}$ and $\mathbf{5 b}$ were shown to establish an equilibrium at an approximate ratio of $1: 1$ with boron trifluoride etherate at $35-40^{\circ} \mathrm{C}$ after 10 h .

[^1] see ref $9 a$.

Figure 1. Conformation of 20.
In an alternative synthesis of (-)-eburnamonine (9), a mixture of 5 a and $5 \mathbf{b}$ was reduced with LiAlH_{4} to give 19 and 20 in 48% and 47% yields, respectively. Attempted Sarett oxidation of pure 20 failed to provide (-)-eburnamonine (9) due to the strong intramolecular hydrogen bonding as shown in Figure 1. Sharp Wenkert-Bohlmann bands at 2750 and $2800 \mathrm{~cm}^{-1}$ support the trans-quinolizidine type C/D ring juncture in 19 and 20.12 Absorption for a free hydroxyl group at $3625 \mathrm{~cm}^{-1}$ in 19 was missing in 20, but a broad absorption at $3100 \mathrm{~cm}^{-1}$ indicates the existence of the hydrogen-bonded hydroxyl group in 20. Releasing the intramolecular hydrogen bonding by the addition of boron trifluoride etherate was followed by oxidation with pyridinium chlorochromate (PCC), giving $(-)$-eburnamonine (9) in 55% yield. Oxidation of 19 with $\mathrm{Hg}(\mathrm{OAc})_{2}$ followed by reduction with NaBH_{4} furnished an approximately $1: 1$ mixture of 19 and the desired C-3 epimer 20 in 80% yield. Thus, 19 can be utilized for the synthesis of (-)-eburnamonine (9).

Recently, Takano and his co-workers ${ }^{9 v}$ reported the total syntheses of (-)-eburnamonine (9), (+)-eburnamine (23), and (-)-eburnamenine (24) through the optically active

bicyclic acetal 22 as the key intermediate, prepared from L-glutaric acid in more than 10 steps in a 13% overall yield. We prepared 22 from 1 in 74% yield in two steps involving the Nef reaction with TiCl_{3} in DME followed by the treatment with p-toluenesulfonic acid (TsOH). This transformation constitutes an extremely short, formal synthesis of these alkaloids.

Syntheses of (-)-Aspidospermidine (7) and (+)Demethoxyaspidospermine (8). The equilibrium between 5a and 5b with boron trifluoride etherate depends upon the reaction temperature. Thus, the $1: 1$ mixture of 5 a and 5 b was treated with boron trifluoride etherate at $100-110^{\circ} \mathrm{C}$ for 1 h to afford $25(47 \%)$ along with the eburnamonine-type lactams $\mathbf{2 6 a}(17 \%)$ and $\mathbf{2 6 b}(35 \%) .{ }^{13}$

25

26a, 3- BH
26b, 3- $\alpha \mathrm{H}$

27a, 3-BH
27b, 3- $\alpha \mathrm{H}$

The structures of $26 a$ and $26 b$ were determined by the conversion into known compounds $27 a^{12}$ and $27 b,{ }^{12}$ respectively. The combined yield (82%) of the product with a $3 S$ configuration ($\mathbf{2 5}$ and $\mathbf{2 6 b}$) indicates that the fast isomerization from 5a to $\mathbf{5 b}$ takes place under these reaction conditions. On the other hand, the product dis-
(12) Coffen, D. L.; Katonak, D. A.; Wong, F. J. Am. Chem. Soc. 1974, 96, 3966 .
(13) In ref 6a, it was reported that the racemate 5 afforded 25 on treatment with boron trifluoride etherate (neither the relative configuration of 5 nor the yield was reported).
tribution was quite different with triflic acid. Treatment of the same mixture of $\mathbf{5 a}$ and $\mathbf{5 b}$ with triflic acid at $100-110^{\circ} \mathrm{C}$ for 45 min gave 25, 26a, and 26b in $46 \%, 44 \%$, and 10% yields, respectively. The products with a $3 S$ configuration slightly exceeded 50%, indicating the slow equilibrium between $\mathbf{5 a}$ and $\mathbf{5 b}$ in triflic acid. In an attempt to increase the yield of the desired 25 , the single isomer $5 \mathbf{b}$ was treated with triflic acid at $100-110^{\circ} \mathrm{C}$ for 45 min . However, the isomerization was not completely suppressed. A 12% yield of $\mathbf{2 6 a}$ was produced along with a 60% yield of the desired product 25 and undesired cyclization product 26b in 20% yield. Exposure of 25 to LiAlH_{4} in tetrahydrofuran (THF) gave (-)-aspidospermidine (7), acetylation of which gave (+)-demethoxyaspidospermine (8) ${ }^{8}$ in 81% yield from 25.

Conclusions

We have established a method for very short syntheses of $(+)$-quebrachamine (6), (-)-eburnamonine (9), (- -aspidospermidine (7), and (+)-demethoxyaspidospermine (8) from 1. The synthetic scheme described here introduces a general approach to a variety of optically active indole alkaloids. For instance, since vincadine, ${ }^{14}$ epi-vincadine, ${ }^{14}$ vincaminoreine, ${ }^{15}$ vincaminorine, ${ }^{14}$ vincadifformine, ${ }^{14}$ minovine, ${ }^{14}$ vincamine, ${ }^{16}$ and apovincamine ${ }^{17}$ were synthesized from quaternary salt 13 , synthesis of optically active 13 constitutes formal total synthesis of these alkaloids in optically active form. Total syntheses of optically active isoeburnamonine and 1,2-dehydroaspidospermidine have been completed though in formal sense, because these alkaloids have been prepared from dilactam $18^{9 \mathrm{a}}$ and quebrachamine (6), ${ }^{18}$ respectively. Thus, lactone 1 bearing a quaternary center has been shown to be a versatile chiral building block for the synthesis of optically active indole alkaloids.

Experimental Section

General Method. Melting points were determined on a Yanagimoto micro melting point apparatus and are uncorrected. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on a JOEL JMNGX 400 or a JMN-FX 100 spectrometer. Optical rotations were measured with a Jasco DIP-181 polarimeter. IR spectra were measured with a Jasco IR-180 spectrophotometer. MS spectra were measured with a JEOL JMS-DX 300 mass spectrometer.

Cyclic Lactams 4a and 4b. A solution of $1^{19}(775 \mathrm{mg}, 3.9$ mmol) in $\mathrm{MeOH}\left(9 \mathrm{~mL}\right.$) was added to a mixture of $\mathrm{NH}_{4} \mathrm{OAc}$ (10.7 $\mathrm{g}, 140 \mathrm{mmol}), 20 \%$ aqueous $\mathrm{TiCl}_{3}(18.6 \mathrm{~mL}, 23.3 \mathrm{mmol}), \mathrm{MeOH}$ $(45 \mathrm{~mL})$, and water (36 mL) under N_{2} and stirred for 3 h at room temperature. The reaction mixture was then poured into ether and separated into phases. The aqueous phase was acidified with $10 \% \mathrm{HCl}$ and extracted with AcOEt several times. The organic extracts were combined, washed with brine, dried $\left(\mathrm{MgSO}_{4}\right)$, and evaporated to give 10 as a colorless oil quantitatively, to which was added 7 mL of AcOH and tryptamine ($625 \mathrm{mg}, 3.9 \mathrm{mmol}$), and the mixture was refluxed overnight. After AcOH was removed under vacuum, $20 \% \mathrm{NaOH}$-ice water was added to the residue, and thé solution was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic layer was washed with brine, dried $\left(\mathrm{MgSO}_{4}\right)$, and evaporated to give a brown oil. Flash column chromatography (silica gel, AcOEt: hexane $=2: 1$) gave an approximately $1: 1$ mixture (1.16 g) of 4 a and 4 b in 84% overall yield from 1.

[^2]These epimers were separated by flash column chromatography over silica gel. Elution with AcOEt-hexane (2:1) afforded 4a as a less polar fraction [${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 0.73(\mathrm{t}, 3 \mathrm{H}, J=7.6 \mathrm{~Hz})$, $1.32-2.08(\mathrm{~m}, 6 \mathrm{H}), 2.05(\mathrm{~s}, 3 \mathrm{H}), 2.35(\mathrm{dd}, 1 \mathrm{H}, J=7.9,12.8 \mathrm{~Hz}$), $2.64-3.20(\mathrm{~m}, 3 \mathrm{H}), 3.88(\mathrm{t}, 1 \mathrm{H}, J=6.4 \mathrm{~Hz}$), $4.08(\mathrm{brt}, 2 \mathrm{H}, J$ $=5.9 \mathrm{~Hz}$), $4.52(\mathrm{~m}, 1 \mathrm{H}), 4.88(\mathrm{br} \mathrm{t}, 1 \mathrm{H}, J=7.9 \mathrm{~Hz}), 7.00-7.60$ (m, 4 H), 8.11 (br s, 1 H); IR $\left(\mathrm{CHCl}_{3}\right) \nu 3470,1735,1675 \mathrm{~cm}^{-1}$; high resolution MS, calcd for $\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{3} 354.1943$, found 354.1914] and $\mathbf{4 b}$ as a polar fraction [${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 0.99$ (t , $3 \mathrm{H}, J=7.6 \mathrm{~Hz}$), $1.35-2.08$ (m, 6 H), 1.94 (s, 3 H), 2.40 (dd, 1 H , $J=7.9,12.8 \mathrm{~Hz}), 2.68-3.20(\mathrm{~m}, 3 \mathrm{H}), 3.76-4.20(\mathrm{~m}, 1 \mathrm{H}), 3.95(\mathrm{br}$ $\mathrm{t}, 2 \mathrm{H}, J=5.4 \mathrm{~Hz}), 4.53(\mathrm{~m}, 1 \mathrm{H}), 4.87(\mathrm{brt}, 1 \mathrm{H}, J=7.9 \mathrm{~Hz})$, $7.02-7.56(\mathrm{~m}, 4 \mathrm{H}), 8.04$ (br s, 1 H); IR $\left(\mathrm{CHCl}_{3}\right) \nu 3470,1735,1675$ cm^{-1}; high resolution MS, calcd for $\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{3} 354.1943$, found 354.1962].

3-(3-Acetoxypropyl)-3-ethyl-5-methoxytetrahydrofuran2 -one (11). Crude $10(14 \mathrm{mg})$ was acetylated with $\mathrm{Ac}_{2} \mathrm{O}$ and pyridine to give crude 11 (14.5 mg), which was purified by PTLC $($ AcOEt:hexane $=5: 1):{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 0.90,0.94(2 \mathrm{t}, 3 \mathrm{H}$, $J=7.4 \mathrm{~Hz}), 1.40-1.84(\mathrm{~m}, 6 \mathrm{H}), 1.84-2.46(\mathrm{~m}, 2 \mathrm{H}), 2.04(\mathrm{~s}, 3 \mathrm{H})$, $3.51(\mathrm{~s}, 3 \mathrm{H}), 4.05(\mathrm{~m}, 2 \mathrm{H}), 5.33(\mathrm{dd}, 1 \mathrm{H}, J=3.5,6.4 \mathrm{~Hz})$; IR $\left(\mathrm{CHCl}_{3}\right) \vee 1770,1735,1245,1180 \mathrm{~cm}^{-1} ; \mathrm{MS} m / e 243\left(\mathrm{M}^{+}-1\right)$. Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{20} \mathrm{O}_{5}$: C, $59.00 ; \mathrm{H}, 8.25$. Found: C, $59.33 ; \mathrm{H}, 8.14$.

Alcohols 12a and 12b. To a refluxing suspension of LiAlH_{4} ($93 \mathrm{mg}, 2.46 \mathrm{mmol}$) in THF (7 mL) was added dropwise a solution of 4 ($145 \mathrm{mg}, 0.4 \mathrm{mmol}$) in THF (3 mL) under N_{2}. After being refluxed for 5 h , the reaction mixture was cooled and stirred with $10 \% \mathrm{KOH}(0.1 \mathrm{~mL})$ for 30 min . The resulting mixture was filtered through a bed of Celite and the solid on the funnel was washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ several times. The organic layers were combined, dried with MgSO_{4}, and evaporated to give a light yellow powder, which can be used for the next step without purification.
Separation by column chromatography on neutral alumina (Woelm, activity II, benzene $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}$) afforded $12 \mathrm{a}(40 \mathrm{mg}, 33 \%$) [mp 194.5-195.5 ${ }^{\circ} \mathrm{C}$ (from AcOEt) (lit. ${ }^{5 \mathrm{~m}} \mathrm{mp} 193-194^{\circ} \mathrm{C}$); $[\alpha]^{22} \mathrm{D}$ $+63.3^{\circ}(c=0.07, \mathrm{MeOH})\left(\mathrm{lit} .{ }^{5 \mathrm{~m}}[\alpha]_{\mathrm{D}}+61.14^{\circ}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)$ $\delta 0.72(\mathrm{t}, 3 \mathrm{H}, J=7.0 \mathrm{~Hz}), 2.42-3.28(\mathrm{~m}, 5 \mathrm{H}), 3.66(\mathrm{~m}, 2 \mathrm{H}), 4.29$ (br t, $1 \mathrm{H}, J=6.0 \mathrm{~Hz}$) , 6.96-7.53 (m, 4 H), 7.82 (br s, 1 H); IR $(\mathrm{KBr}) \nu 3400,3260,1060,740 \mathrm{~cm}^{-1} ; \mathrm{MS} m / e 298\left(\mathrm{M}^{+}\right)$] and 12b ($62 \mathrm{mg}, 50 \%$) [mp 155-156 ${ }^{\circ} \mathrm{C}$ (from AcOEt-MeOH) (lit. ${ }^{5 \mathrm{n}} \mathrm{mp}$ $\left.157-158^{\circ} \mathrm{C}\right) ;[\alpha]^{22}{ }_{\mathrm{D}}-70.4^{\circ}(c=0.25, \mathrm{MeOH})$ (lit. $\left.{ }^{5 \mathrm{n}}[\alpha]_{\mathrm{D}}-62.4^{\circ}\right)$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 0.85(\mathrm{t}, 3 \mathrm{H}, J=7.0 \mathrm{~Hz}), 1.08-1.92(\mathrm{~m}, 9 \mathrm{H})$, $2.09(\mathrm{dd}, 1 \mathrm{H}, J=8.0,13.0 \mathrm{~Hz}), 2.48-3.40(\mathrm{~m}, 5 \mathrm{H}), 3.45(\mathrm{t}, 2 \mathrm{H}$, $J=6.0 \mathrm{~Hz}), 4.14(\mathrm{brt}, 1 \mathrm{H}, J=6.0 \mathrm{~Hz}), 6.99-7.60(\mathrm{~m}, 4 \mathrm{H}), 7.70$ (brs, 1 H); IR (KBr) $\nu 3400,3260,1060,740 \mathrm{~cm}^{-1}$; MS m/e 298 $\left(\mathrm{M}^{+}\right)$.
$(+)$-Quebrachamine (6). Crude alcohol 12 (1.0 g) obtained from the reduction of $4(1.1 \mathrm{~g}, 3.1 \mathrm{mmol})$ was dissolved in a mixture of dry triethylamine (10 mL) and $\mathrm{CHCl}_{3}(20 \mathrm{~mL})$. Methanesulfonyl chloride ($1.6 \mathrm{~mL}, 21 \mathrm{mmol}$) was added dropwise with vigorous stirring at $-10^{\circ} \mathrm{C}$. The same workup as Kutney's procedure ${ }^{5 c}$ gave yellow amorphous mesylate $13(1.3 \mathrm{~g})$. The mesylate $13(65 \mathrm{mg})$ was dissolved in anhydrous $\mathrm{EtOH}(1.5 \mathrm{~mL})$ and subjected to reductive cleavage with sodium in liquid ammonia according to the method of Kutney ${ }^{50}$ to produce a colorless powder. Recrystallization from MeOH yielded (+)-quebrachamine (6: 24 $\mathrm{mg}, 53 \%$ from 4) as colorless plates: $\mathrm{mp} 144-146^{\circ} \mathrm{C}$ (lit. ${ }^{20} \mathrm{mp}$ $\left.147-149^{\circ} \mathrm{C}\right) ;[\alpha]_{\mathrm{D}}^{22}+117^{\circ}\left(c=0.18, \mathrm{CHCl}_{3}\right)\left(\right.$ lit. $\left.^{20}[\alpha]_{\mathrm{D}}+111^{\circ}\right)$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 0.84(\mathrm{t}, 3 \mathrm{H}, J=6.8 \mathrm{~Hz}), 3.24(\mathrm{dt}, 1 \mathrm{H}, J=$ $12.0,2.5 \mathrm{~Hz}$), 6.83-7.56 (m, 4 H), 7.68 (br s, 1 H); IR (Nujol) ν $3370 \mathrm{~cm}^{-1}$; MS m/e $282\left(\mathrm{M}^{+}\right)$.

2-Ethyl-2-(3-hydroxypropyl)-4-butanolide (15). A solution of $1(623 \mathrm{mg}, 3.1 \mathrm{mmol})$ in 4 mL of DME was added to a mixture of 20% aqueous $\mathrm{TiCl}_{3}(15 \mathrm{~mL}, 18.8 \mathrm{mmol})$, and $\mathrm{NH}_{4} \mathrm{OAc}(8.7 \mathrm{~g}$, 113 mmol) in water (29 mL), and DME (40 mL) under N_{2} and the mixture was stirred for 10 h at room temperature. Workup as described in the procedure for 10 gave crude 14, which was dissolved in $\mathrm{MeOH}(50 \mathrm{~mL})$, and $\mathrm{NaBH}_{4}(355 \mathrm{mg}, 9.4 \mathrm{mmol})$ was added to the solution in small portions at $0^{\circ} \mathrm{C}$ followed by the addition of another portion of $\mathrm{NaBH}_{4}(118 \mathrm{mg}, 3.1 \mathrm{mmol})$ after 30 min . The reaction mixture was stirred for 40 min at room temperature and then acidified with $9 \% \mathrm{HCl}$ under ice cooling. After refluxing for $1 \mathrm{~h}, \mathrm{MeOH}$ was removed, and the residue was
(20) Walls, F.; Collera, O.; Sandoval, A. Tetrahedron 1958, 2, 173.
partitioned with water and AcOEt with salting out. The extract was washed with brine, dried $\left(\mathrm{MgSO}_{4}\right)$, and evaporated to give an oily residue, which was purified by short column chromatography (silica gel, AcOEt:hexane $=4: 5$) to give $15(403 \mathrm{mg})$ as a colorless oil, in 75% overall yield from 1: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 0.95$ $(\mathrm{t}, 3 \mathrm{H}, J=7.3 \mathrm{~Hz}), 1.62(\mathrm{~m}, 6 \mathrm{H}), 2.00(\mathrm{~s}, 1 \mathrm{H}), 2.15(\mathrm{t}, 2 \mathrm{H}, J$ $=7.4 \mathrm{~Hz}), 3.64(\mathrm{~m}, 2 \mathrm{H}), 4.26(\mathrm{t}, 2 \mathrm{H}, J=7.4 \mathrm{~Hz})$; $\mathrm{IR}\left(\mathrm{CHCl}_{3}\right)$ $\nu 3620,3600-3200,1758 \mathrm{~cm}^{-1}$; MS m/e $172\left(\mathrm{M}^{+}\right)$. Anal. Calcd for $\mathrm{C}_{9} \mathrm{H}_{16} \mathrm{O}_{3}: \mathrm{C}, 62.76 ; \mathrm{H}, 9.36$. Found: C, 62.62; H, 9.36 .
3-(3-Ethyl-2-methoxy-3-tetrahydrofuryl)propionic Acid (16). Jones reagent was added dropwise to a solution of butanolide $15(367 \mathrm{mg}, 2.1 \mathrm{mmol})$ in acetone $(20 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ until the orange color persisted. After a drop of 2 -propanol and a small amount of water were added to the reaction mixture, acetone was removed under reduced pressure. The resulting mixture was saturated with NaCl and extracted with AcOEt. The extract was washed with brine, dried $\left(\mathrm{MgSO}_{4}\right)$, and evaporated to give a colorless oil (391 $\mathrm{mg})$. This was dissolved in dry $\mathrm{Et}_{2} \mathrm{O}(15 \mathrm{~mL})$ and reduced with a 25% DIBAH solution in hexane ($2.7 \mathrm{~mL}, 4.7 \mathrm{mmol}$) at $-78^{\circ} \mathrm{C}$ under N_{2}. After being stirred for $1 \mathrm{~h}, \mathrm{MeOH}(10 \mathrm{~mL})$ and $p-\mathrm{TsOH}$ ($1.35 \mathrm{~g}, 7 \mathrm{mmol}$) were added to the mixture, and the resulting solution was refluxed for 40 min . Extractive workup with AcOEt followed by short column chromatography (AcOEt/hexane) gave epimeric acetal 16 ($325 \mathrm{mg}, 76 \%$) and methyl ester 17 (25 mg , 6%). A part of epimeric mixture 16 was separated by preparative TLC (1:1 AcOEt:hexane) to provide the less polar one as a colorless oil (${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 0.87(\mathrm{t}, 3 \mathrm{H}, J=7.1 \mathrm{~Hz}), 1.10-2.00(\mathrm{~m}$, 6 H), $2.20-2.43(\mathrm{~m}, 2 \mathrm{H}), 3.32(\mathrm{~s}, 3 \mathrm{H}), 3.91(\mathrm{dt}, 2 \mathrm{H}, J=1.9,7.5$ $\mathrm{Hz}), 4.45(\mathrm{~s}, 1 \mathrm{H}), 6.80-7.80(\mathrm{~m}, 1 \mathrm{H}) ; \mathrm{IR}\left(\mathrm{CHCl}_{3}\right) \nu 1715,1100$, $1045 \mathrm{~cm}^{-1}$; high resolution MS, calcd for $\mathrm{C}_{10} \mathrm{H}_{18} \mathrm{O}_{4}\left(\mathrm{M}^{+}-1\right)$ 201.1127, found 201.1158] and the polar one as a colorless oil [${ }^{1} \mathrm{H}$ NMR (CDCl_{3}) $\delta 0.86(\mathrm{t}, 3 \mathrm{H}, J=7.6 \mathrm{~Hz}), 1.20-2.04(\mathrm{~m}, 6 \mathrm{H})$, $2.20-2.45(\mathrm{~m}, 2 \mathrm{H}), 3.33(\mathrm{~s}, 3 \mathrm{H}), 3.92(\mathrm{brt}, 2 \mathrm{H}, J=7.8 \mathrm{~Hz}$), 4.47 (s, 1 H) , 6.80-7.80 (m, 1 H); IR $\left(\mathrm{CHCl}_{3}\right) \nu 1715,1100,1030 \mathrm{~cm}^{-1}$; high resolution MS, calcd for $\mathrm{C}_{10} \mathrm{H}_{18} \mathrm{O}_{4}$ 202.1206, found 202.1216].

Methyl ester 17 (colorless oil): ${ }^{1} \mathrm{H}$ NMR (CDCl_{3}) $\delta 0.86$ (t , $3 \mathrm{H}, J=7.2 \mathrm{~Hz}), 1.20-1.92(\mathrm{~m}, 6 \mathrm{H}), 2.12-2.36(\mathrm{~m}, 2 \mathrm{H}), 3.31$, $3.32(2 \mathrm{~s}, 3 \mathrm{H}), 3.67(\mathrm{~s}, 3 \mathrm{H}), 3.91(\mathrm{dt}, 2 \mathrm{H}, J=7.2,2.0 \mathrm{~Hz}$), 4.44, $4.46(2 \mathrm{~s}, 1 \mathrm{H})$; $\mathrm{IR}\left(\mathrm{CDCl}_{3}\right) \nu 1725,1095,1040 \mathrm{~cm}^{-1}$; MS m/e 216 $\left(\mathrm{M}^{+}\right)$. Anal. Caled for $\mathrm{C}_{11} \mathrm{H}_{20} \mathrm{O}_{4}: \mathrm{C}, 61.09 ; \mathrm{H}, 9.32$. Found: C , 61.50; H, 9.44.

Cyclic Lactams 5a and 5b. A mixture of 16 ($277 \mathrm{mg}, 1.4$ mmol) and tryptamine ($263 \mathrm{mg}, 1.6 \mathrm{mmol}$) in $\mathrm{AcOH}(3 \mathrm{~mL})$ was refluxed for 6 days and then AcOH was removed under vacuum. The residue was dissolved in MeOH with $20 \% \mathrm{NaOH}$ and stirred for 30 min at room temperature. After addition of water, MeOH was removed under vacuum and the resulting solution was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The extract was washed with brine, dried (MgSO_{4}), and evaporated. The residue gave an approximately 1:1 mixture of $\mathbf{5 a}$ and $\mathbf{5 b}$ ($357 \mathrm{mg}, 84 \%$) after short column chromatography over silica gel with AcOEt-hexane (5:1). These epimers were separated by short column chromatography twice. Repeated short column chromatography afforded pure $5 \mathrm{5a}$ [mp $107-108.5^{\circ} \mathrm{C}$ (from aqueous MeOH); $[\alpha]^{22} \mathrm{D}+88.3^{\circ}(c=0.13$, MeOH); ${ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}) $\delta 0.63(\mathrm{t}, 3 \mathrm{H}, J=5.9 \mathrm{~Hz}$), 0.81 ($\mathrm{m}, 1 \mathrm{H}$), 3.77 (m, 2 H), 4.58-5.14 (m, 3 H), $7.00(\mathrm{~m}, 2 \mathrm{H}), 7.38$ ($\mathrm{m}, 2 \mathrm{H}$), 10.28 (br s, 1 H); ${ }^{13} \mathrm{C}$ NMR (DMSO- d_{6}) $\delta 13.8$ (q), 17.5 (t), 19.9 (t$), 21.9(\mathrm{t}), 31.3(\mathrm{t}), 31.8(\mathrm{~s}), 33.2(\mathrm{t}), 33.5(\mathrm{t}), 49.7(\mathrm{t})$, 53.3 (d), 104.0 (s), 104.4 (d), 110.3 (d), 111.5 (d), 113.9 (d), 119.1 $(\mathrm{s}), 125.0(\mathrm{~s}), 129.1(\mathrm{~s}), 162.1(\mathrm{~s}) ;$ IR $(\mathrm{KBr}) \nu 3400,1595 \mathrm{~cm}^{-1} ; \mathrm{MS}$ $\mathrm{m} / \mathrm{e} 312\left(\mathrm{M}^{+}\right)$. Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{2}\left(+\mathrm{H}_{2} \mathrm{O}\right)$: $\mathrm{C}, 69.06$; $\mathrm{H}, 7.93, \mathrm{~N} ; 8.48$. Found: $\mathrm{C}, 68.86 ; \mathrm{H}, 7.88, \mathrm{~N} ; 8.32$] and 5 b [mp $263-265{ }^{\circ} \mathrm{C}$ dec (from aqueous MeOH); $[\alpha]^{22} \mathrm{D}-195.5^{\circ}(c=0.16$, MeOH); ${ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}) $\delta 1.06(\mathrm{t}, 3 \mathrm{H}, J=7.4 \mathrm{~Hz}$), $3.17-3.30$ ($\mathrm{m}, 2 \mathrm{H}$), $4.16(\mathrm{t}, 1 \mathrm{H}, J=5.0 \mathrm{~Hz}, \mathrm{OH}), 4.83$ (br s, 1 H), 4.76-5.00 (m, 1 H), 6.84-7.12 (m, 2 H), 7.24-7.50 (m, 2 H), 10.23 ($\mathrm{br} \mathrm{s}, 1$ H); IR (KBr) $\nu 3300,1605 \mathrm{~cm}^{-1}$; MS m/e 312 (M^{+}). Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{2}$: C, 73.04; H, 7.74, N; 8.97. Found: C, $72.90 ; \mathrm{H}$, 7.81, N; 8.92.

19-Oxoeburnamonine (18). To a solution of $\mathbf{5 b} \mathbf{(7 . 5 \mathrm { mg } , 0 . 0 2 4}$ mmol) in dry pyridine (0.5 mL) was added a solution of $\mathrm{CrO}_{3}(29$ $\mathrm{mg}, 0.29 \mathrm{mmol})$ in dry pyridine (1 mL). After being stirred for 2 h at room temperature, the resulting mixture was passed through a column of silica gel with AcOEt. Evaporation of the solvent followed by preparative TLC (AcOEt) provided $18(4 \mathrm{mg}, 53 \%)$ as a colorless oil: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.02(\mathrm{t}, 3 \mathrm{H}, J=7.6 \mathrm{~Hz})$,
$2.80(\mathrm{~s}, 2 \mathrm{H}), 3.05(\mathrm{br} \mathrm{d}, 2 \mathrm{H}, J=8.5 \mathrm{~Hz}), 4.50(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 4.98$ $(\mathrm{m}, 1 \mathrm{H}), 7.30(\mathrm{~m}, 3 \mathrm{H}), 8.34(\mathrm{~m}, 1 \mathrm{H})$; IR $\left(\mathrm{CHCl}_{3}\right) \nu 1705,1635$ cm^{-1}; MS m/e $308\left(\mathrm{M}^{+}\right)$.
(-)-Eburnamonine (9). To a solution of $18(17 \mathrm{mg}, 0.055$ mmol) in anhydrous ether (12 mL) was added $\mathrm{LiAlH}_{4}(76 \mathrm{mg}, 2$ mmol) at room temperature. After being refluxed for 2 h under N_{2}, water (1.5 mL) was added and the solution was filtered through a bed of Celite. The residue on the funnel was washed with CHCl_{3} and the combined organic layer was evaporated to give a yellow oil (21 mg). It was dissolved in dry pyridine (ca. 1 mL) and CrO_{3} ($20 \mathrm{mg}, 0.2 \mathrm{mmol}$) was added to the mixture in small portions under stirring at room temperature. After being stirred for 30 min, the resulting mixture was directly filtered through a column with neutral alumina, eluting with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and then AcOEt. Combined fractions were evaporated and purified by preparative TLC (AcOEt) to afford 9 ($12 \mathrm{mg}, 74 \%$): $\mathrm{mp} 171-172^{\circ} \mathrm{C}$ (from MeOH) (lit. ${ }^{21} \mathrm{mp} 173-174^{\circ} \mathrm{C}$); $[\alpha]^{22} \mathrm{D}-88^{\circ}\left(c=0.09, \mathrm{CHCl}_{3}\right)$ (lit. ${ }^{21}$ $\left.[\alpha]_{\mathrm{D}}-85^{\circ} \mathrm{C}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 0.93(\mathrm{t}, 3 \mathrm{H}, J=7.6 \mathrm{~Hz}), 3.96$ (br s, 1 H), $7.10-7.48(\mathrm{~m}, 3 \mathrm{H}), 8.20-8.50(\mathrm{~m}, 1 \mathrm{H})$; IR (Nujol) ν $1700 \mathrm{~cm}^{-1}$; MS m/e $294\left(\mathrm{M}^{+}\right)$. These spectroscopic data were identical with those of racemate. ${ }^{9 \mathrm{v}}$

Tetracyclic Alcohols 19 and 20. To a solution of a $1: 1$ mixture of $5 \mathbf{5}$ and $\mathbf{5 b}(94 \mathrm{mg}, 0.3 \mathrm{mmol})$ in THF (10 mL) was added $\mathrm{LiAlH}_{4}(69 \mathrm{mg}, 1.8 \mathrm{mmol})$ and the mixture was refluxed for 30 min . Usual workup followed by short column chromatography over silica gel with AcOEt-hexanee (1:2) afforded 19 ($43 \mathrm{mg}, 48 \%$) [mp $173.5-175{ }^{\circ} \mathrm{C}$ (from $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}$); ${ }^{1} \mathrm{H} N M R$ $\left(\mathrm{CDCl}_{3}\right) \delta 0.65(\mathrm{t}, 3 \mathrm{H}, J=7.6 \mathrm{~Hz}), 3.34\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right.$ of MeOH$)$ $3.49(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 4.00(\mathrm{~m}, 2 \mathrm{H}), 6.96-7.60(\mathrm{~m}, 4 \mathrm{H}), 9.23$ (br s, 1 $\mathrm{H})$; IR $\left(\mathrm{CHCl}_{3}\right) \nu 3625,3500,3360,2800,2750 \mathrm{~cm}^{-1}$. Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}\left(+\mathrm{CH}_{3} \mathrm{OH}\right): \mathrm{C}, 72.69 ; \mathrm{H}, 9.15, \mathrm{~N} ; 8.48$. Found: C , $72.39 ; \mathrm{H}, 8.78, \mathrm{~N} ; 8.23]$ and $20(42 \mathrm{mg}, 47 \%)$ [$\mathrm{mp} 166-168^{\circ} \mathrm{C}$ (from $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}\right) ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 1.08(\mathrm{t}, 3 \mathrm{H}, J=7.4 \mathrm{~Hz})$, $3.33(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.35-3.57(\mathrm{~m}, 1 \mathrm{H}), 3.73(\mathrm{dt}, 1 \mathrm{H}, J=4.0,12.0$ $\mathrm{Hz}), 5.20-6.20(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 6.96-7.60(\mathrm{~m}, 4 \mathrm{H}), 7.90(\mathrm{br} \mathrm{s}, 1 \mathrm{H}) ;$ IR $\left(\mathrm{CHCl}_{3}\right) \nu 3490,3100(\mathrm{br}), 2960,2920,2800,2750 \mathrm{~cm}^{-1}$; high resolution MS, calcd for $\mathrm{C}_{19} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}$ 298.2050, found 298.2045].

Isomerization of 19 to 20 . A mixture of $19(7.6 \mathrm{mg}, 0.026$ $\mathrm{mmol}), \mathrm{Hg}(\mathrm{OAc})_{2}(24.4 \mathrm{mg}, 0.077 \mathrm{mmol})$, and EDTA $\cdot \mathrm{Na}_{2}(28.5$ $\mathrm{mg}, 0.077 \mathrm{mmol}$) in 1% aqueous $\mathrm{AcOH}(2 \mathrm{~mL})$ was heated at 100 ${ }^{\circ} \mathrm{C}$ for 2 h . After cooling, the reaction mixture was filtered through a bed of Celite, which was washed with MeOH . The filtrate and the washings were combined, condensed to approximately 2 mL , and neutralized with $0.5 \mathrm{~N} \mathrm{NaHCO}_{3}$. Addition of $\mathrm{EtOH}(2 \mathrm{~mL})$ and $\mathrm{NaBH}_{4}(5.8 \mathrm{mg}, 0.15 \mathrm{mmol})$ was followed by stirring for 1.5 h. The reaction mixture was filtered through a bed of Celite, acidified with HCl , concentrated to remove EtOH, and extracted with benzene. The aqueous layer was extracted with CHCl_{3} after addition of $\mathrm{NH}_{4} \mathrm{OH}$. The extract was washed with brine, dried $\left(\mathrm{MgSO}_{4}\right)$, and evaporated to provide an approximately $1: 1$ mixture of 19 and $20(6.1 \mathrm{mg}, 80 \%)$.
$(-)$-Ebrunamonine (9) from 20. To a solution of $20(10 \mathrm{mg}$, $0.034 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.5 \mathrm{~mL})$ was added $\mathrm{BF}_{3} . \mathrm{OEt}_{2}(3.1 \mu \mathrm{~L}, 0.034$ mmol) at $0^{\circ} \mathrm{C}$ followed by addition of PCC ($11 \mathrm{mg}, 0.051 \mathrm{mmol}$), and the resulting mixture was stirred for 9 h . The reaction mixture was stirred for another 4 h after addition of the same amount of PCC, and then $\mathrm{NH}_{4} \mathrm{OH}$ was added to it. Extractive workup with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was followed by preparative $\mathrm{TLC}(\mathrm{AcOEt})$ to provide (-)-eburnamonine ($9 ; 5.5 \mathrm{mg}, 55 \%$).
$(+)-(1 S, 4 S)-1-E t h y l-3,5-$ dioxabicyclo[4.2.1]nonan-2-one (22). A mixture of crude 14 , obtained from 100 mg of 1 , and $p-\mathrm{TsOH}(48 \mathrm{mg}, 0.25 \mathrm{mmol}$) in benzene (50 mL) was refluxed,
(21) Döpke, W.; Meisel, H. Pharmazie 1966, 21, 444.
while water was separated azeotropically for 50 min . The reaction mixture was diluted with $\mathrm{Et}_{2} \mathrm{O}$, washed with water twice, dried (MgSO_{4}), and evaporated. Short column chromatography over silica gel with AcOEt:hexane (1:5) of the residue afforded 22 (63 $\mathrm{mg}, 74 \%$): mp $89-90^{\circ} \mathrm{C}$ (from $\mathrm{Et}_{2} \mathrm{O}$) (lit. ${ }^{9 \mathrm{v}} \mathrm{mp} 82-85^{\circ} \mathrm{C}$); $[\alpha]^{22} \mathrm{D}$ $+5.4^{\circ}\left(c=1.47, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)\left(\right.$ lit. $\left.^{9 \mathrm{v}}[\alpha]_{\mathrm{D}}+6.7^{\circ}\right) ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta$ $0.93(\mathrm{t}, 3 \mathrm{H}, J=7.0 \mathrm{~Hz}), 1.50-2.00(\mathrm{~m}, 6 \mathrm{H}), 2.33(\mathrm{~m}, 2 \mathrm{H})$, $3.80-4.10(\mathrm{~m}, 2 \mathrm{H}), 5.83$ (dd, $1 \mathrm{H}, J=4.9,1.0 \mathrm{~Hz}$); IR (Nujol) ν $1770 \mathrm{~cm}^{-1}$. These NMR and IR spectral data and R_{f} value on silica gel TLC were identical with those of an authentic sample.

Rearrangement of 5. (a) A $1: 1$ mixture of 5 a and 5 b (11 mg , 0.035 mmol) was heated in 0.5 mL of $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$ at $100-110^{\circ} \mathrm{C}$ for 1 h . After the reaction mixture was cooled to $0^{\circ} \mathrm{C}$, it was poured into an ice-saturated NaHCO_{3} solution. Extractive workup with CHCl_{3} followed by preparative TLC with $\mathrm{AcOEt}-\mathrm{MeOH}(10: 1)$ afforded $25(4.8 \mathrm{mg}, 47 \%), 26 \mathrm{a}(1.8 \mathrm{mg}, 17 \%)$, and $\mathbf{2 6 b}(3.6 \mathrm{mg}$, 35%). 25: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 0.50-1.16(\mathrm{~m}, 4 \mathrm{H}), 1.92$ (dd, 2 $\mathrm{H}, J=6.0,10.0 \mathrm{~Hz}), 3.53(\mathrm{~s}, 1 \mathrm{H}), 3.58(\mathrm{dt}, 1 \mathrm{H}, J=7.0,13.0 \mathrm{~Hz})$, $4.44(\mathrm{dd}, 1 \mathrm{H}, J=8.0,13.0 \mathrm{~Hz}), 7.00-7.70(\mathrm{~m}, 4 \mathrm{H}) ; \mathrm{IR}\left(\mathrm{CHCl}_{3}\right)$ $\nu 1645,1635 \mathrm{~cm}^{-1} .26 \mathrm{a}:{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 0.72(\mathrm{~m}, 4 \mathrm{H}) ; 3.72$ $(\mathrm{dt}, 1 \mathrm{H}, J=7.0,12.0 \mathrm{~Hz}), 4.16(\mathrm{~m}, 1 \mathrm{H}), 4.22(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 4.90$ $(\mathrm{dt}, 1 \mathrm{H}, J=14.0,4.0 \mathrm{~Hz}), 7.04-7.60(\mathrm{~m}, 4 \mathrm{H}) ; \mathrm{IR}\left(\mathrm{CHCl}_{3}\right) \nu 1635$ cm^{-1}, which on reduction with LiAlH_{4} in THF afforded epidihydroeburnamenine (27a) $\left[{ }^{1} \mathrm{H}\right.$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 0.76$ (unsym $\mathrm{t}, 3$ $\mathrm{H}), 3.76(\mathrm{dt}, 1 \mathrm{H}, J=7.0,12.0 \mathrm{~Hz}), 4.00-4.22(\mathrm{~m}, 1 \mathrm{H}), 7.00-7.60$ (m, 4 H); IR $\left(\mathrm{CHCl}_{3}\right) \nu 2800,2750,1625(\mathrm{w}), 1570(\mathrm{w}), 1185,1120$ cm^{-1}]. 26b: ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 1.00(\mathrm{t}, 3 \mathrm{H}, J=7.5 \mathrm{~Hz}), 3.68$ $(\mathrm{dt}, 1 \mathrm{H}, J=7.0,12.0 \mathrm{~Hz}), 4.21(\mathrm{dt}, 1 \mathrm{H}, J=12.0,4.0 \mathrm{~Hz}), 4.34$ (br s, 1 H) $, 4.95(\mathrm{dd}, 1 \mathrm{H}, J=6.0,12.0 \mathrm{~Hz}), 7.04-7.58(\mathrm{~m}, 4 \mathrm{H})$; IR $\left(\mathrm{CHCl}_{3}\right) \nu 1630 \mathrm{~cm}^{-1}$, which, on reduction with LiAlH_{4} in THF afforded dihydroeburnamenine (27b) $\left[{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 0.90\right.$ ($\mathrm{t}, 3 \mathrm{H}, J=7.0 \mathrm{~Hz}$), $3.64-3.88(\mathrm{~m}, 1 \mathrm{H}), 3.88(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 4.15(\mathrm{~m}$, $1 \mathrm{H}), 7.00-7.56(\mathrm{~m}, 4 \mathrm{H})$; IR $\left(\mathrm{CHCl}_{3}\right) \nu 1185,1090 \mathrm{~cm}^{-1}$]. (b) Treatment of the same mixture ($20 \mathrm{mg}, 0.064 \mathrm{mmol}$) with triflic acid (0.5 mL) at $100-110^{\circ} \mathrm{C}$ for 45 min and usual workup described above provided 25 ($8.6 \mathrm{mg}, 46 \%$), 26a ($8.3 \mathrm{mg}, 44 \%$), and $\mathbf{2 6 b}$ ($1.9 \mathrm{mg}, 10 \%$). (c) The cis isomer $5 \mathbf{b}$ ($11 \mathrm{mg}, 0.035 \mathrm{mmol}$) yielded 25 ($6.2 \mathrm{mg}, 60 \%$), 26a ($1.2 \mathrm{mg}, 12 \%$), and $26 \mathrm{~b}(2.1 \mathrm{mg}$, 20%) by the same treatment as described in b.
(-)-Aspidospermidine (7) and (+)-Demethoxyaspidospermine (8). To a refluxing suspension of $\mathrm{LiAlH}_{4}(22$ $\mathrm{mg}, 0.57 \mathrm{mmol}$) in anhydrous THF (3 mL) was added dropwise a solution of imine $25(5.6 \mathrm{mg}, 0.019 \mathrm{mmol})$ in anhydrous THF $(2 \mathrm{~mL})$ under N_{2}. After 20 min of reflux, to the reaction mixture were added several drops of $25 \% \mathrm{KOH}$ and ether (2 mL) at room temperature. The resulting mixture was stirred for 30 min and filtered through a bed of Celite, eluting with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic extract was washed with brine, dried $\left(\mathrm{MgSO}_{4}\right)$, and evaporated to afford (-)-aspidospermidine (7), which was immediately acetylated with $\mathrm{Ac}_{2} \mathrm{O}$ and pyridine. The acetate was purified by preparative TLC with AcOEt-MeOH (5:1) to yield (+)-demethoxyaspidospermine (8) ($5.0 \mathrm{mg}, 81 \%$) as a colorless oil: $[\alpha]^{22} \mathrm{D}$ $+14.1^{\circ}\left(c=0.31, \mathrm{CHCl}_{3}\right)\left(\right.$ lit. $\left.^{8}[\alpha]_{\mathrm{D}}-15^{\circ}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 0.64$ $(\mathrm{t}, 3 \mathrm{H}, J=7.0 \mathrm{~Hz}), 2.26(\mathrm{~s}, 3 \mathrm{H}), 2.96-3.20(\mathrm{~m}, 2 \mathrm{H}), 4.09$ (dd, $1 \mathrm{H}, J=6.0,11.3 \mathrm{~Hz}$) $6.96-7.45(\mathrm{~m}, 3 \mathrm{H}), 8.13(\mathrm{br} \mathrm{d}, 1 \mathrm{H}, J=$ $7.9 \mathrm{~Hz})$; $\mathrm{IR}\left(\mathrm{CHCl}_{3}\right) \nu 1645,1600 \mathrm{~cm}^{-1}$; MS $m / e 324\left(\mathrm{M}^{+}\right)$. These spectroscopic data were identical with those of the racemate. ${ }^{5 k}$
Acknowledgment. We thank Professors Seiichi Takano (Tohoku University, Japan) and James P. Kutney (University of British Columbia, Canada) for providing us with an authentic sample and spectroscopic data. This work is supported by a grant from the Ministry of Education, Science, and Culture, Japan (No. 63430024 to K.F.).

[^0]: (6) For the racemate, see: (a) Harley-Mason, J.; Kaplan, M. Chem. Commun. 1967, 915. (b) Laronze, J.-Y.; LaronzeFontaine, J.; Lévy, J.; Le Man, J. Tetrahedron Lett. 1974, 491. (c) Gallagher, T.; Magnus, P.; Huffman, J. C. J. Am. Chem. Soc. 1982, 104, 1140. Gallagher, T.; Magnus, P.; Huffman, J. C. Ibid. 1983, 105, 4750. (d) N-Acetylaspidospermidine: Seki, K.; Ohnuma, T.; Oishi, T.; Ban, Y. Tetrahedron Lett. 1975, 723. (e) Wenkert, E.; Hudlick, T. J. Org. Chem. 1988, 53, 1953. Reference $5 \mathrm{c}, \mathrm{k}, 1$. No chiral synthesis has been reported.
 (7) The natural product is an enantiomer of this compound.
 (8) Ferreira, J. M.; Gilbert, B.; Owellen, R. J.; Djerassi, C. Experientia 1963, $19,585$.
 (9) For the racemate, see: (a) Bartlett, M. F.; Taylor, W. I. J. Am. Chem. Soc. 1960, 82, 5941. (b) Wenkert, E.; Wickberg, B. Ibid. 1965, 87 , 1580. (c) Herrmann, J. L.; Kieczykowski, G. R.; Normandin, S. E.; Schlessinger, R. H. Tetrahedron Lett. 1976, 801. (d) Buzas, A.; Harrison, C.; Lavielle, G. C. R. Acad. Sci., Ser. C 1976, 283, 763. (e) Klatte, F.; Rosentreter, U.; Winterfeldt, E. Angew. Chem. 1977, 89, 916; Angew. Chem., Int. Ed. Engl. 1977, 878. (f) Wenkert, E.; Hudlicky, T.; Showalter, H. D. H. J. Am. Chem. Soc. 1978, 100, 4893. (g) Costerousse, G.; Buendia, J.; Toromanoff, E.; Martel, J. Bull. Soc. Chem. Fr., Part 2 1978, 355. (h) Bölsing, E.; Klatte, F.; Rosentreter, U.; Winterfeldt, E. Chem. Ber. 1979, 112, 1902. (i) Herrmann, J. L.; Cregge, R. J.; Richman, J. E.; Kieczykowski, G. R.; Normandin, S. N.; Quesada, M. L.; Semmelhack, C. L.; Poss, A. J.; Shlessinger, R. H. J. Am. Chem. Soc. 1979, 101, 1540. (j) Buzas, A.; Jacquet, J. P.; Lavielle, G. J. Org. Chem. 1980, 45, 32. (k) Irie, K.; Okita, M.; Wakamatsu, T.; Ban, Y. Nouv. J. Chem. 1980, 4, 275. Irie, K.; Ban, Y. Heterocycles 1981, 15, 201. (1) Imanishi. T.; Miyashita, K.; Nakai, A.; Inoue, M.; Hanaoka, M. Chem. Pharm. Bull. 1982, 30, 1521. (m) Massiot, G.; Oliveira, F. S.; Lévy, J. Tetrahedron Lett. 1982, 23, 177. (n) Atta-ur-Rahman; Sultana, M. Z. Naturforsch. B 1982, 37, 793. (o) Imanishi, T.; Miyashita, K.; Nakai, A.; Inoue, M.; Hanaoka, M. Chem. Pharm. Bull. 1983, 31, 1191. (p) Atta-ur-Rahman; Sultana, M. J. Chem. Soc. Pak. 1984, 6, 49. (q) Kalaus, G.; Malkieh, N.; Katona, I.; KajtarPeredy, M.; Koritsanszky, T.; Kalman, A.; Szabo, L.; Szantay, C. J. Org. Chem. 1985, 50, 3760. (r) Shono, T.; Matsumura, H.; Ogaki, M.; Onomura, O. Chem. Lett. 1987, 1447. References 2b, 5j, and 6e. For the optically active form, see: (s) Novak, L.; Rohaly, J.; Szantay, C. Heterocycles 1977, 6, 1149. (t) Cartier, D.; Lêvy, J.; Le Man, J. Bull. Soc. Chim. Fr. 1976, 1961. (u) Szabo, L.; Sapi, J.; Kalaus, G.; Argay, G.; Kalman, A.; Baitz-Gacs, E.; Tamas, J.; Szantay, C. Tetrahedron 1983, 39, 3737. (v) Takano, S.; Yonaga, M.; Ogasawara, K. Heterocycles 1982, 19, 1391. Takano, S.; Yonaga, M.; Morimoto, M.; Ogasawara, K. J. Chem. Soc., Perkin Trans. I 1985, 305. (w) Magnus, P.; Brown, P. J. Chem. Soc., Chem. Commun. 1985, 184. (x) Hakam, K.; Thielmann, M.; Thielmann, T.; Winterfeldt, E. Tetrahedron 1987, 43, 2035.

[^1]: (11) (\pm)-Dilactam 18 was converted into (\pm)-eburnamonine previously:

[^2]: (14) Kutney, J. P.; Chan, K. K.; Failli, A.; Fromson, J. M.; Gletsos, C.; Leutwiler, A.; Nelson, V. R.; de Souzu, J. P. Helv. Chim. Acta 1975, 58, 1648.
 (15) Mokry, J.; Kompis, I. Lloydia 1964, 27, 428.
 (16) Danieli, B.; Lesma, G.; Palmisano, G. J. Chem. Soc., Chem. Commun. 1981, 908.
 (17) Lewin, G.; Poisson, J. Tetrahedron Lett. 1984, 25, 3813.
 (18) Bycroft, B. W.; Schumann, D.; Patel, M. B.; Schmid, H. Helv. Chim. Acta 1964, 47, 1147.
 (19) Fuji, K.; Node, M.; Nagasawa, H.; Naniwa, Y.; Taga, T.; Machida, K.; Snatzke, G. J. Am. Chem. Soc. 1989, 111, 7921 .

